EPA HF Study Technical Workshop: Chemical and Analytical Methods

Crosslinked and Linear Gel Composition

Richard Hodge

Fracturing Fluid Composition

Fluid Types

- Water-based Fluids
 - Linear Polymer Solution
 - Crosslinked Gel
 - Viscoelastic Surfactants
- Oil-based Fluids
- Acid-based Fluids
- Multiphase Fluids
 - Emulsions
 - Foams
 - Energized

Additives

- Gelling Agents
- Crosslinkers
- Breakers
- Fluid Loss Additives
- Biocides
- Thermal Stabilizers
- Surfactants
- Clay Control Additives

Gelling Agents

- Increase Fluid Viscosity for Improved Proppant Transport
 - Into perforations
 - Along fracture
- Reduce Fluid Loss to Reservoir
 - Deposit filtercake
 - Viscous resistance in porous media
- Create/Maintain Desired Fracture Geometry
- Reduce Friction Pressure Loss in Wellbore
 - Slick Water applications

Common Frac Fluid Gelling Agents

- Guar
- Guar Derivatives
 - Hydroxypropyl Guar (HPG)
 - Carboxymethyl Guar (CMG)
 - Carboxymethyl
 Hydroxypropyl Guar
 (CMHPG)
- Cellulose
 - Hydroxyethyl Cellulose (HEC)
 - Carboxymethyl Hydroxyethyl Cellulose (CMHEC)

- Synthetic Polymers
 - Polyacrylic Acid (PAc)
 - Polyacrylamide (PAm)
 - Partially Hydrolyzed
 Polyacrylamide (PHPA)
 - Acrylamido-methyl-propane sulfonate (AMPS)
- Viscoelastic Surfactants
 - Cationic
 - Anionic
 - Amphoteric

Typical Usage Rate of Frac Fluid Gelling Agents

Polymer	Concentration (by weight)
Guar	< 1%
HPG	< 1%
CMHPG	< 1%
HEC	< 1%
CMHEC	< 1%
Synthetic Polymers	< 0.05%
Viscoelastic Surfactants	< 2%

Crosslinkers

- Increase Effective Molecular Weight by Chemically Linking Polymer Chains
- Create 3D Structure Increases Elasticity and Suspension Properties
- React w/ Specific Sites (Functional Units)
 on Polymers
- Each Crosslinker Has Unique Reaction Requirements and Behavior

Common Crosslinker Compounds

Metallic (Ti & Zr)

- Chelated Compounds
 - Retard OxideFormation
- Crosslinking Rate
 Controlled by
 Complex Stability and
 Ligand Concentration
- Non-reversible
- Shear Degraded

Borate

- Simple Salt (H₃BO₃ & Borax)
- Slowly Soluble Salts (Ca and Mg Salts)
- Borate Esters
- Polyborates

Typical Usage Rate of Common Crosslinker Compounds

General Class	Concentration Range
Borate	< 150 ppm as Boron
Titanate	< 150 ppm as Titanium
Zirconate	< 100 ppm as Zirconium

Breakers

- Purpose
 - Improve Flowback & Maximize Conductivity
- Mechanism
 - Reduce PolymerMolecular Weight
 - React with SpecificSites in Polymer Chain
 - Reverse Crosslinking (Borate Only)

- Common Types
 - Oxidizers
 - Persulfate
 - Perborate
 - Hypochlorite
 - Mg & Ca Peroxide
 - Enzymes
 - Acids
 - Esters of hydroxycarboxylic acids

References

- 1. "Chapter 7: Fracturing Fluids and Additives", *Recent Advances in Hydraulic Fracturing SPE Monograph Series Volume 12*; Society of Petroleum Engineers, 2001.
- 2. "Chapter 7: Fracturing Fluid Chemistry and Proppants", Reservoir Stimulation – 3rd Edition; John Wiley and Sons, 2000.
- 3. "Chapter 7: Fracturing Fluids and Formation Damage", Modern Fracturing; Energy Tribune Publishing Inc., 2007.

